如何实现线程安全的内存缓存
乙醇 创建于 11 months 之前
最后更新: 11 months 之前
阅读数: 951
这两天正好看到一个用go实现的线程安全的内存缓存,实现代码非常简洁高效,不卖弄不烧脑,非常值得初学者拿来学习。
项目地址
项目地址在https://github.com/muesli/cache2go,目前已经有1.8k的star。
如何使用
package main
import (
"github.com/muesli/cache2go"
"fmt"
"time"
)
// Keys & values in cache2go can be of arbitrary types, e.g. a struct.
type myStruct struct {
text string
moreData []byte
}
func main() {
// Accessing a new cache table for the first time will create it.
cache :=
// We will put a new item in the cache. It will expire after
// not being accessed via Value(key) for more than 5 seconds.
val := myStruct{"This is a test!", []byte{}}
cache.Add("someKey", 5*time.Second, &val)
// Let's retrieve the item from the cache.
res, err := cache.Value("someKey")
if err == nil {
fmt.Println("Found value in cache:", res.Data().(*myStruct).text)
} else {
fmt.Println("Error retrieving value from cache:", err)
}
// Wait for the item to expire in cache.
time.Sleep(6 * time.Second)
res, err = cache.Value("someKey")
if err != nil {
fmt.Println("Item is not cached (anymore).")
}
// Add another item that never expires.
cache.Add("someKey", 0, &val)
// cache2go supports a few handy callbacks and loading mechanisms.
cache.SetAboutToDeleteItemCallback(func(e *cache2go.CacheItem) {
fmt.Println("Deleting:", e.Key(), e.Data().(*myStruct).text, e.CreatedOn())
})
// Remove the item from the cache.
cache.Delete("someKey")
// And wipe the entire cache table.
cache.Flush()
}
简单看一下核心api
- 创建缓存对象:
cache2go.Cache("myCache")
- 设置一个key:value对:
cache.Add("someKey", 5*time.Second, &val)
设置的时候需要指定缓存的过期时间 - 获取key对应的value值:
res, err = cache.Value("someKey")
这里就简单分析一下对应接口的实现原理。
key value存储
这里使用的是CacheItem这个结构体来实现的key value存储。相应的数据结构是
// CacheItem is an individual cache item
// Parameter data contains the user-set value in the cache.
type CacheItem struct {
sync.RWMutex
// The item's key.
key interface{}
// The item's data.
data interface{}
// How long will the item live in the cache when not being accessed/kept alive.
lifeSpan time.Duration
// Creation timestamp.
createdOn time.Time
// Last access timestamp.
accessedOn time.Time
// How often the item was accessed.
accessCount int64
// Callback method triggered right before removing the item from the cache
aboutToExpire []func(key interface{})
}
值得注意的点有
- 读写锁:
sync.RWMutex
多线程访问的时候用来进行资源的排他锁定 - 键的实现:
key interface{}
所以key可以是任意类型 - 值的实现:
data interface{}
跟key类似,value可以是任意类型 - 存活时间:
lifeSpan time.Duration
大于这个时间间隔没有被访问的话,的话key就会过期被清理 - 上次被访问的时间:
accessedOn time.Time
- key被访问的次数:
accessCount
再看一下CacheItem初始化的代码
// NewCacheItem returns a newly created CacheItem.
// Parameter key is the item's cache-key.
// Parameter lifeSpan determines after which time period without an access the item
// will get removed from the cache.
// Parameter data is the item's value.
func NewCacheItem(key interface{}, lifeSpan time.Duration, data interface{}) *CacheItem {
t := time.Now()
return &CacheItem{
key: key,
lifeSpan: lifeSpan,
createdOn: t,
accessedOn: t,
accessCount: 0,
aboutToExpire: nil,
data: data,
}
}
可以看出来创建时间和上次访问时间都被设置成了当前时间,访问次数是0.
缓存对象的实现CacheTable
CacheTable对象包含了n个CacheItem,看一下具体的数据结构
type CacheTable struct {
sync.RWMutex
// The table's name.
name string
// All cached items.
items map[interface{}]*CacheItem
// Timer responsible for triggering cleanup.
cleanupTimer *time.Timer
// Current timer duration.
cleanupInterval time.Duration
// The logger used for this table.
logger *log.Logger
// Callback method triggered when trying to load a non-existing key.
loadData func(key interface{}, args ...interface{}) *CacheItem
// Callback method triggered when adding a new item to the cache.
addedItem []func(item *CacheItem)
// Callback method triggered before deleting an item from the cache.
aboutToDeleteItem []func(item *CacheItem)
}
这里需要关注的地方是
items map[interface{}]*CacheItem
: 每个item其实都是这个map里的一项,其实map的key就是item的keycleanupTimer *time.Timer
: 用来做缓存过期的定时器cleanupInterval time.Duration
: 扫描所有的items进行缓存过期清理的时间间隔
添加一个key value
// Add adds a key/value pair to the cache.
// Parameter key is the item's cache-key.
// Parameter lifeSpan determines after which time period without an access the item
// will get removed from the cache.
// Parameter data is the item's value.
func (table *CacheTable) Add(key interface{}, lifeSpan time.Duration, data interface{}) *CacheItem {
item := NewCacheItem(key, lifeSpan, data)
// Add item to cache.
table.Lock()
table.addInternal(item)
return item
}
func (table *CacheTable) addInternal(item *CacheItem) {
// Careful: do not run this method unless the table-mutex is locked!
// It will unlock it for the caller before running the callbacks and checks
table.log("Adding item with key", item.key, "and lifespan of", item.lifeSpan, "to table", table.name)
table.items[item.key] = item
// Cache values so we don't keep blocking the mutex.
expDur := table.cleanupInterval
addedItem := table.addedItem
table.Unlock()
// Trigger callback after adding an item to cache.
if addedItem != nil {
for _, callback := range addedItem {
callback(item)
}
}
// If we haven't set up any expiration check timer or found a more imminent item.
if item.lifeSpan > 0 && (expDur == 0 || item.lifeSpan < expDur) {
table.expirationCheck()
}
}
梳理一下流程
- 创建cache item
- 加读写锁
- 调用
addInternal
方法 - 在items map里添加一项,key就是item的key,value就是item
- 获取整个CacheTable的清理缓存间隔时间
- 解锁,到这一步基本上就完成了数据的持久化
- 运行添加item时的回调函数,如果有的话
- 如果item设置了过期时间,并且table的过期扫描间隔是0(首次添加)或者item的过期间隔小于table的过期间隔时间的话,调用
expirationCheck
函数,进行过期扫描
扫描并清理过期的key
代码如下
// Expiration check loop, triggered by a self-adjusting timer.
func (table *CacheTable) expirationCheck() {
table.Lock()
if table.cleanupTimer != nil {
table.cleanupTimer.Stop()
}
if table.cleanupInterval > 0 {
table.log("Expiration check triggered after", table.cleanupInterval, "for table", table.name)
} else {
table.log("Expiration check installed for table", table.name)
}
// To be more accurate with timers, we would need to update 'now' on every
// loop iteration. Not sure it's really efficient though.
now := time.Now()
smallestDuration := 0 * time.Second
for key, item := range table.items {
// Cache values so we don't keep blocking the mutex.
item.RLock()
lifeSpan := item.lifeSpan
accessedOn := item.accessedOn
item.RUnlock()
if lifeSpan == 0 {
continue
}
if now.Sub(accessedOn) >= lifeSpan {
// Item has excessed its lifespan.
table.deleteInternal(key)
} else {
// Find the item chronologically closest to its end-of-lifespan.
if smallestDuration == 0 || lifeSpan-now.Sub(accessedOn) < smallestDuration {
smallestDuration = lifeSpan - now.Sub(accessedOn)
}
}
}
// Setup the interval for the next cleanup run.
table.cleanupInterval = smallestDuration
if smallestDuration > 0 {
table.cleanupTimer = time.AfterFunc(smallestDuration, func() {
go table.expirationCheck()
})
}
table.Unlock()
}
简单过一起逻辑
- 加读写锁
- 如果启动了扫描定时器,关闭定时器先
- 扫描所有的key,对每一个key
- 加读锁
- 获取key的存活周期
- 获取key的上次访问时间
- 如果存活周期是0,则不处理,这是持续保活的逻辑,可以先不管
- 如果现在的时间距离上次访问时间已经大于了key的存活时间,则删除这个key
- 否则的话算出所有key里面最快要到期的那个key的时间间隔
- 如果有拿到了最快要到期那个key的时间间隔,则运行定时器,在下这个时间间隔之后运行清理函数
- 解锁
删除key的实现
// Delete an item from the cache.
func (table *CacheTable) Delete(key interface{}) (*CacheItem, error) {
table.Lock()
defer table.Unlock()
return table.deleteInternal(key)
}
func (table *CacheTable) deleteInternal(key interface{}) (*CacheItem, error) {
r, ok := table.items[key]
if !ok {
return nil, ErrKeyNotFound
}
// Cache value so we don't keep blocking the mutex.
aboutToDeleteItem := table.aboutToDeleteItem
table.Unlock()
// Trigger callbacks before deleting an item from cache.
if aboutToDeleteItem != nil {
for _, callback := range aboutToDeleteItem {
callback(r)
}
}
r.RLock()
defer r.RUnlock()
if r.aboutToExpire != nil {
for _, callback := range r.aboutToExpire {
callback(key)
}
}
table.Lock()
table.log("Deleting item with key", key, "created on", r.createdOn, "and hit", r.accessCount, "times from table", table.name)
delete(table.items, key)
return r, nil
}
删除的逻辑相对简单一些,主要是需要注意加锁解锁以及运行之前注册的回调函数。
总结
这应该是我见过代码最简单但是star相对比较多的开源项目了。这个项目非常适合我们进行学习,因为
- 可以帮助我们理解锁的使用以及如何使用锁来保证线程安全;
- 帮助我们理解key value内存缓存的实现
- 提供了一种使用定时器来实现定时任务的思路
- 帮助我们理解如何注册和运行回调函数